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On three-body scattering cross sections? 

W 0 AmreinS and K B SinhaPj 
$ Department of Theoretical Physics, University of Geneva, 121 1 Geneva 4, Switzerland 
5 Indian Statistical Institute, 7 SJS Sansanwal Marg, New Delhi 110029, India 

Received 26 October 1981 

Abstract. Using a Hilbert space version of the Faddeev method, we prove finiteness and 
continuity as a function of the energy of the total scattering cross section for three quantum 
mechanical particles with two-body initial states. We assume that the pair potentials are 
locally in Lq(R3) for some q > $ and decay as 1x1 * at infinity. 

1. Introduction 

It is well known that the quantum mechanical scattering problem for a non-relativistic 
particle by a local potential V leads to a finite total scattering cross section if V ( x )  
tends to zero faster than I x I - ~ - ’  as 1x1 +CO for some 6 > 0, whereas a decrease as I x I - ~  
or more slowly than Ix/-’ gives rise to an infinite total cross section in general (for a 
more exact borderline, involving logarithmic factors, see Martin (1979)). For the 
three-body problem with local pair potentials V,)(r1 - r , ) ,  one again expects that the 
total scattering cross section for a two-cluster initial channel should be finite if all 
Vl , (x)  decay faster than /XI - ’ - ’  as 1x1 + 00. It is the purpose of the present paper to 
prove this result under a suitable assumption on the local singularities of VI/ .  

The finiteness of the total scattering cross section, integrated over a range of 
energies, for N-body systems with pair potentials decaying like Ix/-’-’, has recently 
been proven by time-dependent methods (Amrein et a1 1979, Enss and Simon 1980). 
These methods, though mathematically rather simple, are not suitable for making 
statements about the scattering cross section at fixed values of the energy. To obtain 
results at fixed energy, it still seems necessary to use the more elaborate stationary 
method, which leads to exact expressions for the T matrix. For the three-body 
problem, the essence of this approach is some kind of Faddeev equation. The original 
work of Faddeev (1965) uses hypotheses on the Fourier transforms of the pair 
potentials VI,,  which essentially require that V,,(x)+O at infinity faster than 1x1 ’ ’. 
The hypotheses of Faddeev do imply the finiteness of the scattering amplitude at all 
scattering angles. 

Faddeev’s method has been formulated in Hilbert space language by Ginibre and 
Moulin (1974) (see Newton 1971, Thomas 1975, Howland 1976, Mourre 1977 for 
related work), and in this form it suffices to make a hypothesis on the pair potentials 
themselves rather than on their Fourier transforms. Ginibre and Moulin prove 
asymptotic completeness if 

(1) V&) = V,.i,(X)+ VZ,I/(X) = (1 +IxI)-2-6(w1.1,(x)+ W2.,/(X)) 

t Supported by the SWISS National Science Foundation. 
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with S > 0, W1,,/ E L p ( R 3 )  l l  Lq(R3)  for some p > $> q and Wz,,, E Lm(R3). Amrein et a1 
(1977) have used this Hilbert space approach to prove the finiteness of the total 
scattering cross section for bounded potentials decaying as 1 ~ 1 - ~ - ’ .  The extension of 
their method to the class of potentials given by (1) involves some technicalities which 
will be described in the sequel, the principal one being a choice different from that 
made in earlier publications for the auxiliary operator C, introduced in lemma 1. 

Section 2 contains the definition of the various Hamiltonians used in the three-body 
problem. In § 3 we explain the Faddeev method in Hilbert space and its relation to 
the S matrix, and in § 4 we establish the finiteness of the total scattering cross section 
and its continuity as a function of the energy. A certain number of auxiliary results 
will be announced in the form of lemmas, the proofs of which will all be collected in 
the appendix. 

We shall use some of the results of chapter 16 of Amrein et af  (1977). This 
reference may also be consulted for a motivation of the Faddeev method in Hilbert 
space and for additional details and will be cited as AJS. The following notations will 
be used: D ( A )  denotes the domain of the linear operator A, B ( X ,  X) or W ( X )  3 

a(%, X) the set of all bounded everywhere defined linear operators from the Hilbert 
space X to X’ or X respectively, Bz(X,  X’) the set of all Hilbert-Schmidt operators 
from X to Z,  B4(X, X) the set of all operators A in a(X, 2”) such that A*A E a 2 ( X ) ,  
and am(%’) the set of all compact operators in X. llA/lHs is the Hilbert-Schmidt norm 
of A, llA114 llA*Allh/ its B4 norm and l l f l l  the L2 norm of the function f defined on 
R3 or R6. Throughout the paper, the letter S refers to the number appearing in (1). 
We set W,, = W,,, ,  + WZ,,,  and let I W,111’2 and W::’ be the multiplication operators by 
1 Wl(rl  -r,)ll” and 

IW/bl -r/)ll’z sgn wll(rl -r1) 
respectively. 

2. Hamiltonian operators in the three-body problem 

We consider three spinless particles and denote by mi the mass of the jlh particle and 
by ri E R3 its position vector. We use the letters a, 6, c, d to label pairs of particles, 
i.e. a = {1,2}, {1,3} or {2,3}. For each value of a, we introduce two relative coordinates 
x, and y, as follows: if a = {k, I } ,  then x, = rl - rk and 

Y, = rkl - (mk + m)-’(mkrk + mrrr), 

where t k l  is the position vector of the particle not included in the pair {k, I}. If, for 
example, { k ,  I} = {1,2}, then Ix,l is the distance from particle 1 to particle 2, and ly,l 
is the distance from the centre of mass of particles 1 and 2 to particle 3. We denote 
by P, and K,  the relative momentum operators associated with the position variables 
X, and yo respectively, i.e. P, = -iVxa and K ,  = -ivy.. We shall often use the fact that 
any three different relative coordinates are linearly dependent. For example we have 
x, = p x b + u y b ,  where p and U are constants (depending on a and b )  that are both 
non-zero if a # b, or x, = p’xb + v’x, if b # c, where p’  and U’ are again non-zero if a, 
b and c are all different. 

After separating off the centre-of-mass motion of the three-particle system, its 
relative motion is described in the Hilbert space X = Lz(rW6), where the six variables 
may be any of the three sets {x,, y,}.  For each value of a, Lz(R6) may be viewed as 
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a tensor product L2(R6)=L2(R3)  @L2(R3), where the variables in R3 are x, and y, 
respectively. To specify the choice of variables, we shall write this tensor product as 
Lf.(R3) 0 L 3 R 3 ) .  

For each value of a, the free Hamiltonian Ho has the form 

~0 = Y ~ P :  + 7aK: (2) 

where y, and 7, are positive constants depending on the masses m l ,  m2 and m3 and 
on a, i.e. on the choice of a set of relative coordinates. The total Hamiltonian is 
obtained by adding to Ho the sum of three pair potentials 

H = H o + C  v, 
a 

(3) 

where V, denotes the multiplication operator in L2(R6) by the real-valued function 
V, (x,). Under the hypothesis (1)  on the pair potentials, Z V, is a small form perturba- 
tion of Hn (this follows from the estimates in the proof of lemma 5(i)). Hence the 
self-adjoint operator H can be defined by adding the quadratic forms associated with 
Ho and ZV, (see Faris 1975, Simon 1971 for details). This means in particular that 

In addition to Ho and H, we shall use the cluster Hamiltonians H, which are 

(4) 

The first operator on the right-hand side acts only in the variable x,, the second one 
only in the variable y,. When viewed as an operator in Lf,(R3), the first operator 
h, = yap:  + V, represents the Hamiltonian for the relative motion of the two particles 
forming the pair a, interacting via the potential V,(x,) .  If Rp(h,) denotes the subspace 
of Lf0(R3) spanned by the set of all eigenvectors of h,, we fix an orthonormal basis 
{ e ; }  of Rp(ha) formed of eigenvectors of h , ( j  = 1,.  . . , n, ) .  Since there are three such 
sets of eigenvectors (as a varies), it is useful to label them by a single index a (a = 
1, . . . , n(12) + n(l3) + n(23)). The notation a + a will mean that the vector e,  associated 
with the number a is an eigenvector of the Hamiltonian h, (i.e. one of the chosen 
vectors e ; ) .  We denote the associated eigenvalue by A,: haea = Le,. 

D ( I H p 2 )  = D ( H Y 2 ) C  D(lv,\1/2). 

defined as the form sum of Ho and V,, i.e. formally 

H, = (yap2 + Val + 70~:. 

For each a, we define the channel subspace A, in L2(R6) by 

A, := e, OL:,(R~) ( 5 )  

where a + a  and e,  is viewed as a function of x,. The direct sum of all A, with a + a 
is called the cluster subspace A, : 

A, := 8 A,. 
a-, 

The orthogonal projection with range A, or A, will be denoted by E, or E, respec- 
tively. If a + a, Ha commutes with E, and satisfies the relation 

(7) 

In order to be able to control the resolvent ( H - z ) - ’  of the total Hamiltonian 
when the complex number z approaches the real axis, one has to know the spectral 
properties of the three two-body Hamiltonians h, in sufficient detail. To formulate 
the assumptions on the spectrum of ha, we factorise the potential V, into V, = A,B,, 
where A, and B, are the multiplication operators in L2(R6) by A , ( x a )  := I V,(x,)I1” 

HaEa = (ha + 7aK; )Ea. 
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and B, (x,) := I V, (x , ) /”~ sgn V, (x, 1 respectively. We denote by a, and e, the 
corresponding multiplication operators in Lfa(R3). Under the hypothesis ( l ) ,  the 
operators 

(8) 

are compact operators in Lfa(R3)). The spectral assumptions on ha may be conveniently 
formulated in terms of wU;+-,(). 

We assume that (S1) for each A 20 ,  w:+iO do not have the eigenvalue -1, (S2) 
the point t = -1 is an eigenvalue of for at most a finite number of (negative) A. 

In terms of ha,  (Sl)  and (S2) mean that the spectrum of ha on [O,CO) is purely 
absolutely continuous, that there is no zero-energy resonance and that h,, has only a 
finite number of (strictly negative) eigenvalues, all of which are of finite multiplicity 
(AJS ch 10). We shall also need to know a weak decay property of the eigenfunctions 
of ha, namely that (S3) 

@U;+,():= c - + O  lim e , ( y . ~ ;  + A  Fi.c-ln,  

(1 + lxa1)2+6eu(xa) E L ~ ( R ~ )  

where S is the number appearing in (1). A discussion of (Sl)-(S3) for the class of 
potentials satisfying (1) is given in remark 4. The following consequence of (S3) will 
be important. 

Lemma 1. Assume that V, is of the form (1) and let e, E L:,(R3) be an eigenvector 
of ha satisfying (S3). Then (1 + 1xaI)”ea(x,) E D(lP,l) for each Y E [0,2 + S ) ,  where 
\Pa 1 := ( P a )  2 1/2 is viewed as an operator in Lfa(R3). 

This property of the eigenvectors of ha will allow us to prove the following results. 

Lemma 2. Let p : R’+ R be defined as p ( x )  = (1 + I X ~ ) - ~ - ’ ’ ~ ,  and denote by C, the 
multiplication operator in L2(R6)  by p ( y , ) .  Then C,E, = E,C,. If a and b are arbitrary 
and c # d ,  each of the following operators is in B(L2(R6)): 

( i )  1 wa1’/2(1Pbl + I)..’ Ba ( 1  P b  I -t 1 I-’ I Wa It12Eh BaEh 

(ii) c c ‘ A  dE, C;  E , A ~  C;’E,C~’Ad 

(iii) c ’ E, c h .  

Each eigenvalue A, of ha forms a scattering threshold for the three-body problem. 
We define 0, := {A, la i a }  and 0 := U, 0, U {O}. 0 consists of n(’2)+ n(13h+ q2’)+ 1 
(not necessarily different) numbers, namely the ni12)  + n ( l 3 )  + n(23) negative thresholds 
for the  two-body scattering channels introduced above, and the point A. = 0 which is 
the threshold for the three-body channel corresponding to three freely moving 
particles. We shall set a = 0 when referring to this latter channel. The corresponding 
channel subspace is A(l = L2(R6),  i.e. the entire Hilbert space, and the corresponding 
channel Hamiltonian is the operator Ho defined in (2). 

3. The three-body resolvent and the scattering amplitude 

For the class of potentials (11, the existence of the wave operators for the three-body 
problem, the asymptotic completeness of the scattering theory and hence the existence 
of a family of scattering operators S,, satisfying the unitarity relation were established 
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by Ginibre and Moulin (1974). S,, maps .U, into AB and is the scattering operator 
for scattering from the initial channel a into the final channel p. One usually considers 
the case where the initial channel is a two-body channel, whereas the final state may 
have a component in each channel p, including the three-body channel p = 0. 

If a i a ,  the scattering amplitude from channel a to channel /3 at energy A is 
formally given as 

(9) 

where we have set h =  1. Here IA,wp;p)  is an improper eigenstate of the channel 
Hamiltonian Hp = A P  + v&zh ( p  t b ) ,  viewed as an operator in .Up. This eigenstate is 
determined by the value A of the energy and by another variable up. If p # 0, wP is 
a vector on the unit sphere S’ in R3, which describes the direction of the relative 
momentum of the two-body cluster and the free particle in channel p. If p = 0, wP 
varies over a five-dimensional ellipsoid 8’ := { ( p c ,  k,) I ycpf + vckz = 1). We shall write 
wg = (U, q ) ,  where w = pc/lpcl and q = (v , /A)”*k,  and c is any of the three pair indices. 
w gives the direction of the relative momentum of the two particles in the pair c and 
(A/q,)”*q the relative momentum of the third particle with respect to the centre of 
mass of this pair. The constants cp,(A) in (9) depend on the normalisation of the 
states ( A ,  U,; y )  and will not be needed explicitly. The sum X: runs over all values 
c # b when 0 # p i b and over all three values c = {l, 2}, {1,3}, {2,3} when p = 0. 

We are concerned with the finiteness and continuity in A of the total scattering 
cross section, i.e. with the finiteness and continuity in A of 5 I f p u ( A ;  w, dos. 
More precisely, we shall discuss the average of this quantity over the initial direction 
w,, i.e. 

(10) 2 
C?S,(A):=- do, do0 I f B u ( A ; w U + ~ p ) l  . 

47r ‘ I  
If C ? ~ , ( A )  is finite for each final channel p, then the averaged total cross section 

for scattering initiated in channel a will also be finite, since the number of scattering 
channels is finite by 6 2 ) .  The energy A in (11) lies in the interval (A,, OO), and the 
sum is effectively only over those channels p that are open at the energy A, i.e. such 
that A B  s A .  

In order to estimate ePp,(A), one has to give a precise meaning to the formal 
expression (9). This involves the following two problems: (i) study the limit of 
Vc(H - A  - i E ) - l  Vd as E + 0 (notice that (H - A  - i E ) - l  becomes unbounded when 
E + 0), (ii) give a precise meaning to the ‘eigenstates’ / A ,  up;  6). Problem (i) is solved 
by using a variant of the Faddeev method to show that certain auxiliary operators 
related to B, (H - A  - iO)-’Cd are bounded and depend continuously on A, and problem 
(ii) is handled by using the spectral representation of the self-adjoint channel Hamil- 
tonians HP.  

To study the operators Yid := B,(H -z)-’Cd in the neighbourhood of the real 
axis, it is convenient to introduce the Hilbert space 2 = X@X@X and to attach the 
label {1,2}, {1,3} and {2,3} to the first, second and third summand respectively. The 
family of nine operators YZd (each of which acts in X= L2(W6)) can then be combined 
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into a single operator Y ,  acting in X ;  Y ,  is an operator-valued 3 x 3 matrix with 
entries Y',". We shall write Y,  = { Y:"}. The Faddeev method allows one to study Y,  
in terms of the simpler operator {B,R:Cd}, where R :  := ( H ,  - 2)- '  is the resolvent of 
the cluster Hamiltonian H,. In this method it is essential to treat separately the part 
of R', cokresponding to the bound states of the two-body Hamiltonian h, (i.e. R',E,) 
and the part of R', corresponding to the continuous spectrum of h, (i.e. R;(I- .E,)) .  
For this purpose we introduce yet another Hilbert space 9 = X @ X .  We label objects 
pertaining to the first summand by an index 0 and objects pertaining to the second 
one by an index 1, and we shall use these two summands to treat R ;  (I -E,) and R fE,  
respectively. An operator d acting in 9 may be viewed as a 2 x 2 matrix 
where the entries A,k are operators acting in X .  f will be the identity operator in X .  

For each non-real z we define an operator K, from X to % and an operator J,  
from 9 to x as follows 

Jz ( fo Oft ) = fo + Gzfi ( 1 2 )  

K :  ={B,(I  -E,)RfCd) K = { C Eccd } ( 1 3 )  

G: = {BcEcR',Cc&i}. (14) 

K,g = K:gOKig 
where fo, fl,  g E X and K:, K i and G ,  are operators in X given by 

We also introduce the operator 8, = {D, , ,k}  acting in 9 by 

Dz,oo={Bc(I-Ec)R:Ad(l - 8 c d ) )  Dr.oi = Dt.ooGZ ( 1 5 )  

D2.io = {C;'ECAd( 1 - g c d ) }  D z . i i  =D:.ioG,. (16) 

We notice that K i  and Dr,10 do not depend on z and are bounded operators by 
lemma 2. The boundedness of the other operators defined in (13)-(16) and of Y ,  
essentially follows from the definition of H and H, and will be verified in lemma 5 
in the appendix. 

By simple algebraic manipulations, using the second resolvent equation and lemma 
5 ,  one finds that these operators have the following properties (AJS, Propositions 16.5,  
16.7(a) and equation (16.20)): 

f +d, is an invertible operator in 9, and (f + 6,)-' E a(.@) (17) 

Y ,  = J,  ( f + 6, ) - ' K,. (18) 

We notice that 8, has a special structure, namely that it may be written as 
8, = fi + ( f i 2  - fi), where 

does not depend on z and is nilpotent: fi' = 0. Setting -@, = (f-fl)(fi, -fi), we 
find from this that 

f+b2 = ( f+fi)( f+ -&). (19) 

Since (f - fi)(f + fi) = f = (1 + k)(f - fi), we have (f + f i ) - '  = (f - fi), Hence, by 
(17) above, (f+-@,)=(f-fi)(f+d,) is invertible and we have 

(i+8J1 = (f+ @J1(f-fi). 
In the next lemma we collect the properties of the operators -@= and then explain 

how these are related to the boundary values of Y, on the real axis. 
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Lemma 3. (i) For each non-real z ,  @z is a compact operator in 9. 

norm, and the convergence is uniform on each compact subset of W \ 0 .  
( i i )  For each A E R\0, the limit @ A + i ~ =  lim @A+ie  as E + +O exists in the operator 

We now define To to be the set of all A in W \ 0  for which f +  @ A + I o  is not invertible. 
By the results of lemma 2 and a local version of lemma 9.5 of AJS (see p 389) ,  it 
follows that ToUO is a closed subset of R of Lebesgue measure zero and that 
(f+ is a norm-continuous function of A and E when A varies over a compact 
subset A of R\(To U 0) and E over [0, 1 3 .  To is called the exceptional set associated 
with the family {-@z}lm r s O  and will be briefly discussed in remark 4. 

I n  view of the identity (20), the preceding statements lead to the following 
proposition. 

Proposition 1 .  Let z be non-real or z = A + io with A f! To U 0. Then f + d, is invertible, 
and (f + E,) - ’  E a($?). If A is any compact subset of R\(To U 0) and A +  := { z  E C 1 Re z E 
A, Im z E [0, l ] } ,  then ( f+BZ)- l  is a norm-continuous function of z on A + .  

We now introduce the spectral representation of the channel Hamiltonian Ha. If 
a # 0, this spectral representation is obtained by a unitary operator Q, mapping the 
subspace d, of L2(R6) onto 9, := L2([A,, CO), L 2 ( S 2 ) ) ,  the Hilbert space of all measur- 
able functions defined on [A,, CO) with values in L 2 ( S 2 )  (the Hilbert space of square- 
integrable functions on the unit sphere S 2 )  such that 

Here fA denotes the value of f at the point A .  The unitary operator %, is such that 
%aHaQi’ is the multiplication operator by A in %, and is given by 

J 

where a - a, k, = [ 2 p a  (A  - A , ) ] I ’ * ,  pa is the reduced mass of the two clusters in channel 
a, and f~ L;.(R3), i.e. e ,  O f ~ d , .  We also define the operator U” : L2(R6) + L 2 ( S 2 )  
by multiplying Qa with E, : U“ := %,E,. 

For a = 0, we consider three spectral representations of Ho labelled by a pair index 
c. U: is a unitary operator from L2(R6) onto %< := L2( [0 ,  CO), L 2 ( @ ) )  diagonalising 
Ho, given by 

( U ~ f ’ f ) ~ ( o , q ) = ( 2 T ) - ~ h ~ ( h , q )  

where 

( 2 3 )  

The passage between different spectral representations of Ho is given by the unitary 
operators U!U:* mapping %c onto %b. These operators have the form (U:~!l:*f)~ = 
UbcfA, where U b c  is a A-independent unitary operator in L 2 ( S s ) ,  induced by the 
coordinate transformation bC, kC)- bb, kh). 

2 1 /2  2 2 
hc(A, q ) = t ( 2 T y c q c ) ” ” 2 ( 1  - 4  ) A q 4 = 141. 
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We also consider a class of operators M P ( A ,  A )  and M:' (A,  A )  mapping L 2 ( R h )  
into L 2 ( S 2 )  and into L2(%') respectively. These operators depend on the energy A 
and a bounded operator A acting in L2(R6). For p # 0, we set 

(24) [MO (A, A )fI(wa ) = ( U'Af), ( W O  1 

M:' (A,  A ) f  for example is obtained by restricting the Fourier transform of the vector 
Af to the ellipsoid {(pc, k c ) ]  ycpf + 7,kf = A}. The following properties of these 
operators will be used (,yA denotes the characteristic function of the Bore1 set A E R, 
E: the spectral projection of H,, associated with A):  

MP(AB,  A )  = M P ( A ,  A)B (26) 

M P ( A ,  A )  =M4(E@A,  A )  (27) 

M:' (A,  A )  = ~ J A  ) M Y  (A,  A )  = M Y  (E:A, A ) (28) 

We notice that the adjoints M'(A,  A ) *  and M :  (A, A ) *  of these operators map L 2 ( S 2 )  
and L2(  8') respectively into L2(R6). 

We are mostly interested in the case where A is a multiplication operator in 
L2(R6) .  In the next lemma we specify sufficient conditions on A implying that M'(A,  A )  
or MY (A, A )  are reasonable operators (for instance bounded or in the Hilbert-Schmidt 
class). If A is the multiplication operator by a function c p :  Rh+C or by a function 
$(x,), we shall denote the associated operator M P ( A ,  A )  by MP(cp, A )  and M'((9,, A )  
respectively. 

if A E A. 

Letnma 4. ( i )  Let m = 0,1,2 or 3, a # b and Icpm(xar xh)l s p ( x , )  'n$(xh) with $ E L2(R'), 
where p is as in lemma 2. Then, for 0 # a +a,  M"(cpm, A ) E  B2(L2(Rh), L 2 ( S 2 ) )  for all 
A > A, and is a continuous function of A in Hilbert-Schmidt norm. 

(i i)  For 0 # a  + a  f b, M"(Ah,  A )  and M"(C2, A )  belong to B4(L2(R"), L 2 ( S 2 ) )  for 
all A 3 A,, and are continuous in B4 norm. 

(i i i )  Let $(x,)E L3(R3).  Then M:($a ,  A ) E  B(L2(R6), L 2 ( 8 ' ) )  and is strongly con- 
tinuous, for all A > 0. 

( iv)  M " ( A ,  A )  and MI: ( A ,  A )  satisfy the following properties. If g E Y(LWh), then 
( a  + a f 6 )  

($<,, A ) is never compact if (9 # 0. 

B t & g = /  M"(Bh, A)*(U"g),  dA 

uv-lim B:Et,(RY+,F -RI; , F ) g  = 27riM"(Bh, A)*(U"g) ,  
c -+o 

To establish the relation with the scattering amplitude, consider for instance the 
first term on the right-hand side of (9). Assume a factorisation of the pair potentials 
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v d  into v d  = &x& such that M"(x&, A )  and k f ' ( ( X d ,  A )  exist. One may then write 

C p a ( A ) ( A ,  u p ;  PI V d I A ,  mu; a)= 1 C p a ( A ) ( A ,  u p ;  pIEpvdEuIA, a n ;  Q )  
d # a  d + a  

= C p u ( h )  d3Xd d 3 Y d ( A ,  u p ;  pIE&d(xd, y d ) ( x d r  ydIX&EuIA, O n ;  a). 
d # U  

(29) 

The two factors in the integrand are (up to some multiplicative constants dp(A) and 
d,(A)) nothing but the integral kernels of the operators MP(Xdr  A )  and M"(X; ,  A ) *  
respectively, if these operators are viewed as integral operators from L2(R6) to L 2 ( S 2 )  
(if  p # 0) or L 2 ( S 5 )  (if p = 0) and from L 2 ( S 2 )  to L2(R6) respectively. The integration 
in (29) corresponds to the composition of the two kernels, i.e. to multiplication of the 
two integral operators. Thus the expression (29) is proportional to the kernel of the 
integral operator 

The constant of proportionality turns out to be equal to (-27ri)-1Cpu(A)dp(A)du(h) = 
-27rik"' (see remark 1 ) .  

In  the same way, by virtue of (18) and the definition of Yz,  the second term on 
the right-hand side of (9) is given by (-27riki') times the integral kernel of 

(31)  

Here M"(VdCd' ,  A ) *  maps L2(S2)'into L2(R6), the operator in the middle acts in 
L2(R6),  and M P ( A , ,  A )  maps L2(R6) into L 2 ( S z )  or L 2 ( S s ) .  

Let us now define 

R,,(A) = ~2: ( A  )+ R:~(A) .  (32) 

The preceding discussion shows that the scattering amplitude f P o  ( A  ) is equal to 
(-27riki' ) times the integral kernel of the operator Rpo(A). Since the integral over 
both variables of the absolute square of the kernel of an integral operator is equal to 
the Hilbert-Schmidt norm of this operator, we find from (10) that 

(33 )  

To prove the finiteness of ePn(A) and its continuity as a function of A, it therefore 
suffices to show that Rg:(A) and R;:(A) belong to the Hilbert-Schmidt class and 
depend continuously on A in the Hilbert-Schmidt norm. This will be the content of 
the next section. 

Remark 1. The relation (33) between the averaged total scattering cross section and 
the Hilbert-Schmidt norm of RPu(A) can be rigorously derived from the general 
principles of scattering theory by using a stationary expression for the scattering 
operator and lemma 4 (iv). The operator RP,(h)  defined in (30)-(32) is related to 
the scattering matrix Spa ( A )  at energy A by RB,(A) = Spa ( A )  - I,, where I, denotes the 
identity operator in L 2 ( S 2 ) .  The normalisation in deriving (33) is chosen such that 
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the total cross section for a well collimated initial state in channel a having energy 
distribution q ( h )  (a f a ,  A = A, + q&?) is ZD q(A)eD,(A) dA. 

4. Properties of the scattering cross section 

In this section we shall use the results of § 3 to show that R,, (A ) E B2 and is continuous 
in Hilbert-Schmidt norm, for each two-body incoming channel a and all final channels 
p, and for all energies A except possibly those in To U 0. For this we shall treat Rg:(A ) 
and R$(A) separately. As before, we let a + a  and consider various possibilities of 
p, case by case. 

Case I. O # p i a .  In (30), we write xd = B d  and X L  =Ad ,  to get R:: (A)=  

to B4 and are continuous in B4 norm for all A. It follows that R:l(A) is Hilbert-Schmidt 
and continuous in Hilbert-Schmidt norm (see Kat0 (1971) for more details on 3 4 ) .  

-27ri kf@(Bd,  h)kf"(Ad,  A ) * .  By h l m a  4 (ii), kf@(Bd,  A )  and kf"(Ad,  A )  belong 

Case ZZ. 0 # /3 - b # a fa. In this case we rewrite (30) as 

+kf@(C;, A)M"(C,2V2d, A)*]  (34) 

. By (27) and (261, where p d  means multiplication by p ( x d )  = (1 + I x d l )  

M P ( C i W 1 L 2 , A ) = M P ( C ~ , A ) E p W : ~ .  Since EDW:i2  ~3(%') by lemma 2 and 
p(y,,)'<constant p ( ~ ~ ) - ~ p ( x , ) ~  by (AlO), we get from lemma 4 (i) ( m  = 3) that 
M'(c~:  w;L2, A )  E B ~ .  Similarly ~ ; ~ ~ : l  Wld11'2 sp;3pdl Wldl''', and since by the 
Holder inequality p(xd) I  w l d ( x d ) 1 1 / 2  E L2(R3)), the second factor in the first term of (34) 
is also in B2. For the second term we notice that kf"(Ch2V2d, A ) =  
M"(Ci, A)EaC,2Ch2 v 2 d  and that E a c , 2 c , 2  V2d E a(%') by (s3), since 
lp (y , ) -  'p (yh) - '  V2d(xd)l s constant p ( ~ , ) - - ~  by ( ~ 1 0 ) .  We then have 
M P ( C t ,  A)M"(Cb2V2d,  A ) *  E a2 by lemma 4 (ii). The continuity in 3' norm of both 
terms in (34) follows from lemma 4. 

Case ZZZ. /3 = 0. Using the spectral representation of Ho given by U: and setting 
A l d ( x d )  = IVld(xd)11/2,  we have 

- 1/2-6/4 

R h u ( h ) = - 2 r i  [M:(Bld,  A)kf"(Ald ,  A ) +  udakf:(p?, A)M"(p;'V2,  I*]. 
d + a  

Hence Rk!(A)  E a2 by virtue of lemma 4 (iii) and lemma 4 (i) (with m = 0 and m = 2). 
The continuity of Rbbi(A) in Hilbert-Schmidt norm follows from the fact that both 
M:(Bld, A )  and M : ( p ? ,  A )  are strongly continuous in A (lemma 4 (iii)) and the other 
factors are continuous in Hilbert-Schmidt norm (see lemma 8.23 of AJS). 

Remark 2. From the above calculations it is clear that V, E L;/:(R3) is the best we 
can do in order to ensure R'pL(A) E 3 2 .  On the other hand, only for the elastic or 
simple inelastic scattering, i.e. in case I, do we need the fully decay property of V,, 
namely V, (x) - I x I - ~ - '  at infinity. For rearrangement scattering (case 11), if we assume 
that W l c  = 0, then 
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is in 9 2  even if ~ 2 d ( x )  - I x I - ' ' ~ - ~  at infinity, which can be seen by using the result of 
remark 7. On the other hand for break-up scattering (case 111) it is necessary to have 

For Rg?(A) as given in (31), we shall consider the limits as E + +O of those entries 
of the operator-valued matrices M5(Ac ,  A)JA+,, and KA+,,M"( V&', A )  that actually 
occur in (31). The Hilbert-Schmidt nature of R$?(A) for A in R\(ToUO) will follow 
if we can show that the first of these limits exists in some sense and the second one 
is Hilbert-Schmidt, since the limit of (f+6A+lE)-' as E + +O exists in norm by proposi- 
tion 1. The continuity in A of Rgi(A) will result if e.g. the first limit is strongly 
continuous and the second one continuous in Hilbert-Schmidt norm, by using lemma 
8.23 of AJS and the norm continuity of (f + BA+,0)-' on R\(To U 0). 

at infinity. -312-E  
V 2 d ( X )  - 1x1 

We first treat the relevant entries of MB(Ac, A ) J A + l c .  By (12) we have 

M*(AC, A )[JA+I, (foOfi)]~ = M*(AC, A )fo.C + M P ( A , ,  A )B&Ri+l,Ccfi,c. 

The first term on the right-hand side is independent of E ,  and by lemma 4 M P ( A , ,  A )  
is a bounded operator which is at least strongly continuous in A for all p. For the 
second term on the right-hand side we first assume 0 # p i  b and notice that c # b (as 
expressed by the symbol Xi in (31). Using (26), we write 

M* (Ac, A )B,E,R i +,,Cc = M P  ( p  fAcC; ', A I[ Wt"E, IC,E,R i +L. 

The first factor is Hilbert-Schmidt by lemma 4 (i), the second one is bounded by 
lemma 2 and the last one has a norm limit as E + +O for all A E R\O, by lemma 6 (ii). 
The continuity in A is obtained similarly. 

For /3 = 0 we let Fz be the spectral projection of qcKf for the interval [0, p ]  and 
observe that E: = EiF', for every interval A E [O, p ] .  Using this, (28) and (26) one 
has for A E A: M :  (Ac, A )  = M: (E:F',A,, A = M :  (Ac, A IF',. Thus 

M :  (Ac, A)BcEcR:+,,C, 

= M:(A, ,  A)[B,EC][F:(~,Kf + & - A  - - ~ E ) - ' E ~ C , ] .  (35) 
Y - C  

Since A, ( ) E L2(R3),  M: (Ac, A )  is bounded by lemma 4 (iii). Furthermore BcEc E B(Z) 
by lemma 2.  An appropriate choice of p and A, as on p 666 of AJS, shows that the 
last factor in (35) has a norm-continuous boundary value for A E A, leading to the 
strong continuity of the right-hand side of (35) for A 3 0. 

Now we treat the term K;d,,,M"( v d c , ' ,  A ) * ,  with cy + a  # d. From (13) and (26) 
we obtain 

K:':f&fm( v d c , ' ,  A ) *  

= Bc (I - E, ) R  : +,,Mu ( v d ,  A )* 

= Bc ( I  - E, ) R  i +,€A 1 &fa ( B  1 d ,  A )* + Bc (I - E, )R i clBp :Ma ( V 2 d p  *, A )* . 
(36) 

That the first factors of the two summands in (36) have norm-continuous boundary 
values as E + CO follows from lemma 7 (when d = c )  and from the first part of the 
proof of lemma 3 (when d # c ) .  On the other hand and V 2 d ( ' )  are in L2(R3),  
and thus both M ' ( B l d ,  A)* and M u (  V 2 d p a 2 ,  A)* are Hilbert-Schmidt by lemma 4 (i). 
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Finally we have 

BY lemma 2 ,  E,w:" E ~ ( R I .  Since plJCd)'Ad(Xd)p(yr)-l sconstant  

by lemma 4 (i)  that M ^  (p iAdC; ' ,  A )* E 3'. It is clear that K : ~ , , ~ M " (  VdC;', A )* is a 
continuous function of A in Hilbert-Schmidt norm on R\@. 

p(Xd)Ad(Xd)p(Xa) by (A10) and since p(Xd)Ad(Xd)E L (R')), and CY + a  # d ,  we have 

Thus we have proven the following proposition. 

Proposition 2. Let each pair potential V, be as in ( l) ,  and assume (Sl), (S2) and (S3). 
Let a be a two-body channel. Then R p a ( A )  is a Hilbert-Schmidt operator for each 
A E (A-, 03)\(Tt, U 0 )  and each open final channel, and {Rpo ( A ) }  is continuous in Hilbert- 
Schmidt norm on (A,,, a))\(Tt) U @). The averaged total scattering cross section 6 u . t c , t ( A )  
for the initial channel cy is finite and is a continuous function of A on ( A a ,  a))\(rg U 0). 

Remark 3. The threshold set 0 appears in proposition 2 only because of the application 
of lemma 6 (ii) in the proof of lemma 3, which is concerned with the continuous 
bounded invertibility of f+8A+i0 .  This happens because, in order that the term 
K:"dM"( VdCi',  A ) *  = [E,W:'*]Ma(piAdC,I ,  A ) *  is Hilbert-Schmidt, we had to 

. By taking C ( y )  = (1 + Iyl)-' -*", one could avoid choose C ( y  ) = p ( y )  = (1 + 1yl)- 
the threshold problem, but then W 2 ,  would have to be zero in order that REI(A)  E 9'. 

1 / 2  -6/4 

Remark 4.  We comment here briefly on some spectral properties of two- and 
three-body Hamiltonians. 

( i )  The hypotheses (S l )  and ( S 2 ) ,  for a potential Vu satisfying ( l ) ,  are known to 
hold, except possibly for a discrete set of values of the coupling constant, if W 1  has 
compact support. In fact, by proposition 3.5 of Ginibre and Moulin (1974), W ; t 4 , 0  
has the eigenvalue -1 for at most a finite set of points A, all of which are eigenvalues 
of finite multiplicity of h,  = y,P: + V,  (except possibly A = 0). If W 1  is of compact 
support, then h, can have no positive eigenvalues (this follows by combining the results 
of Kat0 (1959) and of Amrein et a1 (1981)). The invertibility of w :+io+ 1 for A = 0, 
except possibly for a discrete set of values of the coupling constant, is discussed in 
remark 10.18(6) of AJS. The decay assumption (S3) of the eigenfunctions of h, (for 
negative eigenvalues) is satisfied by theorem XIII.40 of Reed and Simon (1978). By 
using the exponential decay of these eigenfunctions e , ( x ) ,  one can show by an iteration 
procedure as in the proof of lemma 1 that (1 + Ixl)"e,(X) E D(IPl) for each 8 E R. 

(ii) As regards the exceptional set To for the three-body problem, one expects 
that all points in To are eigenvalues of the three-body Hamiltonian H. This can be 
shown for negative A in To essentially as in proposition 7.2 of Ginibre and Moulin 
(1974). In particular this result implies absence of a singularly continuous spectrum of 
H in (-a, 0). For the positive exceptional points the problem is not solved for our 
class of potentials; absence of a singular continuous spectrum has been shown under 
stronger assumptions on the pair potential by Faddeev (1965), Jafaev (1978), Sigal 
(1978) and Mourre (1981). 
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Appendix 

In this appendix we present the more technical aspects of our proofs. We first give 
some simple properties of the pair potentials. 

In (1) we assumed that W1 E L p ( R 3 )  n Lg(R3) for some p > 1 > q. It is easy to see 
that the same class of potentials V is obtained if one assumes only W1 E L p ( R 3 )  for 
some p > ;. In many parts of the proofs below it even suffices to know that W1 E 
L”2(R3) .  

Let I W11’2 be the multiplication operator in L2([w’) by I Wl(x)  + W2(x)l and P = -iV,. 
Using the inequality la +bl”2sla11’2+1b11/2 and lemma 7.24 of AJS, one sees that, 
i f p > $ :  

lllw11/2(lPl + 1)-IIl s 1 1 1 ~ 1 1 ’ ~ 2 ( 1 ~ 1  + 1)-’II+III w211’2(lPl + 1l-lIl 

II w111” I + 1 )-- l l l Z P  + /I w21122 < Co. ( A I )  

In particular, I W(1’2(1Pl + l)-’ E 93(L2(Iw”)). If W1 is only in L”’(Iw’), one obtains by 
using the identity IIA*AI( = IIA/12 and the Sobolev inequality (Kato 1971, lemma 1) that 

/ / I  w111’2(IPI+ l ) - l ~ ~ s ~ ~ /  w111’2(P2+ l ) - ’ ~ 2 ~ ~ ~ ~ ( P 2 +  l)1/2(lPl + l)-lIl 
s~~lwl11’2(P2+l)--’~ W’1 )I 1’2 1 / 2  

s constant 11 ~ ~ 1 1 ~ ~ ~ .  (A21 

Proof of lemma 1. We omit the subscripts a and a and denote by Q the position 
operator in L 2 ( R 3 ) .  By hypothesis, we have e E D((Z + IQI)’*’, e E D ( H )  E D(lHI’”) = 
D(IP0 and 

3 

/‘I 
(PJ, p,e) + ( I   VI'"^, V’”e) = A ( f ,  e )  VfE D(lPI). (A31 

We notice that D(lP1) = n:= I D(P,)  and that 
Z c ( P / f ?  pig) = CIPlf9 lPk) V f ,  g E D(IP1). (A4)  

( i )  Let 4:  R7+[0, CO) be a non-negative CT function such that $(x) = 0 if 1x1 2 1 
and 4 ( x )  d’x = 1, and set $,(I-) = E - ’ ~ ( E - ’ X )  for E E (0, 1). For f~ L 2 ( R 3 ) ,  set ft = 
(lrc * f ,  i.e. 

/ = I  

Then (see Adams 1975, lemma 2.18) f F  E C“(R’)nL2(R’), i l f r l l ~ l l f l l  and \ l f - f F / + O  
as E + 0. 

We apply this to f = e. We claim that, for each K E [0, 2 +SI 

ep E D(P, )  IIP,e - P,e, I/ + 0 asE-0  (A6)  

and 
ep E D(lQI“) l l (Z+ lQ l ) * (e  -es) l l -+O as E --* 0. (A7) 

(Ah) is immediate if we notice that P,e, = t+bF * ( P , e )  (the derivative -ic?/dx, may be 
interchanged with the integral in (A.5)). To prove (A7) ,  we observe that 

/x - y 1 -s E < 1 * I (  1 + Ix/)“ - ( 1 + /y I ) “  1 F K  ( 2  + ly IY. (A81 
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This implies that 

I(1 + I~ l ) “e , ( x ) I sK l~ ,  * ( I + I Q l ) “ e l ( x ) l + ~ ~  J ~ L , ( x - Y ) ( ~ + I Y I ) “ I ~ ( Y ) I .  

Since e E D((I  + IQI)“), we obtain that (I + IQl)”e, E L2(R3). Similarly one finds that 

1(1+ Ixl)“[e(x)-e,(~)Il 

s EK J +c(x - Y W  + IuI)”Ie(y)I + 1(1+ IxI)“e(x)- [ l~,  * (I + IQl)“el(x)l. 

Since the right-hand side converges strongly to zero as E + 0, we get the second 
assertion in (A7). 

We remark the following consequence of (A6): 

x (  )e,  ( 1 E W’;) for each ,y E C,” (R3). (A9) 

(ii) Let cp E C,“ (R3) be such that 0 s cp(x) s 1, ~ ( x )  = 1 for 1x1 =s ,l and cp(x) = 0 for 
1x1 ~ 2 ,  and let @,,, be the multiplication operator by cp,(x):= cp(m- x) (m 2 1). Then, 
since (I + /QI)”@,,, is a bounded operator and (I + IQ1)2’@ke, E D(Pj )  by (A9) 

3 

C I I ( I  + IOI)”QmPje1I2 
J = 1  

We estimate each term on the right-hand side. For t‘,“ and tL2’ we obtain 
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where c is independent of m. Letting m +CO, this implies (for instance by the monotone 
convergence theorem) that (I + IQI)”Pie E L2(R3) for each j .  Since Pi(Z + IQl)”e = 
(I+~Q~)’P,e-ivQj~Q~-l(I+JQJ)Y-’e, we have (I+IQl)”e E niD(Pi)=D(IPI) for all 

We next take 6 = 1 +f6 and v s $(1 +is) (i.e. 2v - 2 - 8  s 1 +f6 and 2 v  - 6 s 2 + 6) 
and find similarly that (I + IQI)”Pie E L2(R3) and (I + 1Ql)”e E D(IPI). The assertion of 
the lemma is obtained by iterating this procedure, taking in the nth step 6 =  
(1 - 2-”)(2 + 6) and v s (1 - 2-“-’)(2 + 8 ) .  

” s 1 +&. 

Proof of lemma 2. (i) We identify L2(R6) with the spectral representation of the 
multiplication operator by yb, i.e. L2(R6)  = L2(R3, L:,(R3); d3yb), the space of all square- 
integrable L~,(R3)-valued functions of y b  E R3. In this representation of L2(R6),  the 
operator I wa11/2(1pbl + I)-’ is decomposable, i.e. given by a family {F(yb)} of operators 
acting in L ~ , ( R ~ ) .  F(yb) is as follows 

F ( Y b ) =  Iwa(pQb f v Y b ) l ” Z ( l p b l +  I)-’ 

= exp(ivyb - ~ 6 1 1  w,(p~b)I”~(IpbI  + I)-’ exp(-ivyb p b )  

where p # 0. We have 
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Remark 5. It is seen from part ( i )  of the preceding proof that I Wal''2Eb may be finite 
even if the two-body Hamiltonian h b  has an infinite number of bound states. It suffices 
to know that all eigenvalues of hb are lying in a compact set. 

The next three lemmas contain the preliminary results needed to prove lemmas 
and let W, = { Wzd}  be the associated operator 3 and 4. We set Wtd = B,(Ho - 

in Yf. 

Lemma 5. Let Im z # 0. Then 
(i)  W,, Y,, G,, K!,  K f  are all in %?(XI, 
( i i )  Dz,,k E B(X) for all i, k = 0, 1. 

Proof. ( i )  We have B c ( H l l +  1) ' I 2  = [Br(/P,I+ l)-'][(lPcl+ l ) (Ho+ l)F"*]. The first 
factor is in S ( X )  by lemma 2 (i), and the second one by the definition (2) of HI). 
Similarly one obtains (HI]+ 1) -1/2Ad E B(Z). Hence, if Im z # 0, 

B , ( H o - z )  'Ad =[B,(Ho+ 1)-'/2][(Ho+ l)(H(j-~)-'][(Ho+ 1 ) - ' I 2 A d ] ~  B(2"). 

From (A2) we also obtain that there is a constant K ( Z )  such that 

I IBr(H0-z)  ' A ~ ( J ~ K ( Z ) I I S ~ ( . ) ) ) ~ I ) A ~ ( . ) ) I ~ .  (A121 

Similarly we have 

Yid  =B, (H-z ) - 'Cd=[B , (H[ )+ l )  '/2][(H()+1)"Z(kf-z) ' ] cdE9(2" )  

since Cd E a( 2") and HI, is form bounded relative to H. An identical line of reasoning 
works for G, and K :  since (HI]+ l)''2(Hc - z )  ' E a(%) for all c. That K f  E B(X) is 
contained in lemma 2 (iii). 

( i i )  I t  suffices to show that Dz,ooEB(X), for the boundedness of D,.Io is a con- 
sequence of lemma 2 while that of G, has been shown in part (i). For this we observe 
that 

B,(Z-E,)R:Ad =[B,(Hrj+ 1)-'/2][(H~j+l)1'2R~(H~~+l)1'2][(H~~+1) ''2A,,] 

-B,E,[R>(Ho+ l ) ' /* ] [ (Ho+l)  'I2Ad] 

which is in B(X) by (i), the form boundedness of Ho relative to H, and lemma 2 ( i ) .  

Lemma 6. ( i )  For all c, d, W;':,, converges in operator norm to WYi,l, as E + +O, 
uniformly in R, and for c # d, Wtd E Bm(X) for all z .  

( i i )  CdR;EdC($ E am(%') and has norm boundary values as z + A  +io for all A E R\O,i. 
Moreover, the convergence is uniform in every compact subset of R\Od. 

Proof. ( i )  Denoting U, = exp(-iHd) and setting for simplicity H o  = Pf + K f ,  we have 
by using the commutativity of Qc and K, and equation (13.4) of AJS 

U:B, U,A,i = exp(iPfr)B, exp(-iPft)Ad = exp(iQf/4r)B,(2PCr) exp(-iQf/4t)A,,. 
(A131 

The last expression defines a decomposable operator in LZ(Rh)=  L2(R3, L:'(R3); d7yr). 
Thus UTB, U,A,i = { F ( y ,  )}, with 

F ( y ,  1 = exp(iQf/4r)Br(2P,t)Ad(CLQ, + vy,) exp(-iQ?/4r) 

= exp(iQf/4t) eXp[i(v/p)P, yr]Br(2P,t)Ad(/~Qr) 

x exp[-i(v/p)P, * y , ]  exp(-iQf/4t). 
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We notice that p is never 0 in the change of variables relation xd = px, + vy, and get, 
again using equation (1  3.4)  of AJS, that 

\lBCutAdII = /IBc(2Pct)Ad(pQ~)11 

= I/exp(-i~,2/4t)  exp(iP:t)B, exp(-iP,2t) exp(iQf/4t )&(pQ,)II 

= eXp(-iPft)Ad(pQc)II. (A141 

Since Bc(Ho - z)-'Ad = i som e'"B,U,Ad d t  for Im z > 0, it follows that we shall have 
the first part of ( i )  if we can show that IIB,LI,AdllE L'(R). This, by ( A 1 4 ) ,  reduces to 
showing that the two-body object IIB,(Q) eXp(-iP2t)Ad(pQ)II is in L' (R) .  This follows 
from a result in D 6 of Kat0 (1966) ,  since by our hypothesis on Vc, one has that 
1 v,( e ) 1 ' "  E L'~(R') n L ~ ~ ( R ~ )  with 1 s 4 < t < p .  

Let c # d ,  Im z # 0 and W:fn := qn(Qc)(Ho- z)-'rC/,,(Qd), where (P,, and CL,, are 9(R3) 
functions such that llBc ( + ) - q,, ( * ) 1 1 3  + 0 and llAd ( * ) - (. )I13 + 0 as n + 00. Since qn, 
$,, E L*(R.') r l  Lm(R3) for each n, it follows from lemma 16.3(a)  of AJS that W:dn E 

93m(%).  On the other hand, 

IIW:d - WlI lnl Is I I (Bc-(Pn(Qr)) (Ho-Z)- 'AdI I+I I ( (Pn(Qc)(H[) -Z)- ' (Ad-(Ln(Qd)) I I  

s constant[lIB,( - cpn(  * )(131IAd( * 1113 + Ibfl ( * )11311Ad( * - rC/" ( * )I131 

by ( A 1 2 )  and thus converges to zero as n -00, showing that W:d E 9 3 m ( X )  if Im z # 0. 
Since Wit, , ,  converges to W;"+,, in norm, we also have W;",[) E CBm(%). 

( i i )  By (7)  and since Td # 0, 

cdRtEdcd= 1 Cd(qdK5 + A ,  -Z) - 'E ,Cd  
n - d  

By proposition 10.23 of AJS, the operator p ( Q ) ( K 2 - ~ ' ) - ' p ( Q )  in L2(R3) 
(K = -i grad) is compact and has boundary values in operator norm as 2'-  p + i O  with 
p # O ,  the convergence being uniform on compact subsets of R\{O}. Hence 
CdRftlrEdCd converges in norm as E + +O for all A adr uniformly on compact subsets 
of R\@& The compactness of CdRtEdCd is obtained as in lemma 16.14 of AJS. 

Remark 6. It is clear from the proof of part (i) and Kat0 (1966) that q(Q,) 
(H" - z)-'(L(Qd) E B ~ ( % )  for all z E c and converges in norm, uniformly in A E R, as 
z+A+iO,  if q , r C / ~ L ~ + ' ( R ~ ) , L ~ - ~ ( R ~ ) a n d c # d ( & > O ) .  

Lemma 7. Assume ( S l )  and (S2) .  Then B,(I -E,)R:A. converges in operator norm 
as z + A +io,  uniformly for A E R. 

Proof. The proof is the same as that of lemma 16.16 in AJS except for minor adjustments 
due to our weaker hypotheses on the pair potentials. If 27 < 0 is the eigenvalue of 
h, = y,P: + V,  nearest to 0 and if p 2 -7, then 

b,E,c(ha ) ( h a  - @  - iT) - 'G 

where A I ,  . . . , A,, are the eigenvalues of h, and E { A k }  are the associated eigen- 
projections. The second term has boundary value because A k  - p < -27 - p < 0 and 
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because 

J Q E { A ~ ) ~ Q  =&,(\Pal+ l)-'(l~Ql+l)(IhQI"-''2 

x (IAkI+ 1)E{,ikl(IhaI+ 1 ) - 1 ' 2 ( l p a l +  l ) ( l P a l +  I ) - ' ~ Q  
Q l  is in 9 ( L 2 ( R 3 ) )  by lemma 2. The first term is & ( h , - p - i V ) - l a ,  = Z - ( Z + U ~ + ~ , , ) -  , 

which has boundary value for all p 3 -T because of (Sl)  and (S2). In addition, using 
the facts that l l ~ ' ~ + , ~ l l + O  as @ + C O  (Simon 1971, theorem 1.23) and that U':+,,, 
converges to w : + , ~  in norm as 77 + +0, uniformly for f i  E R (see the proof of lemma 
6 or Thomas (1975) ) ,  one can show that ba(hQ -& - i V ) - ' a Q  converges as ++0 
uniformly for p 3 -T. 

Proof of lemma 3. In view of the definition 
the compactness for Im z # 0 of 
operators as z + A +io. We first consider an element of D2,00(c # d )  

B, (I -E, )R:Ad =B, ( I  - E , ) ( R ;  -R:V,R:)Ad 

:= (1 - f i ) (D ,  - fi), it suffices to prove 
D2.01 and Dr.ll and the convergence of these 

= [ I  - B,(I - E,)R:A,]B,R;& - [B,&~;~lpfR:Ad.  (A16) 

By lemma 6 ( i )  and remark 6, both and pfR:Ad  are compact and have norm 
boundary values as z + A  + 0, uniformly in A, since P ( x ) ~  E L 3 + E ( R 3 )  fl L 3 -  '(R3). Next 
we note that, by (S2) and (S3) 

IIBcEc~;2/I lIBcEcIIIIEc~;2/I 

llBcEcIIll(I + l Q c l ) ' + ' ' 2 e ~ l l ~ ~ t ~ ~ ) < ~ .  
a - c  

Since by lemma 7, B,(I - E,)R:A,  E a(%') and has norm boundary value as z + A  +io, 
uniformly in A, it follows from (A161 that DZ.oo E a , ( X )  and has norm boundary value 
as z + A +io, uniformly in A. 

DSfOi = ( D , , ~ o G , ) ' ~  

Next, by (19 ,  

= [ I  - B,(I - E,)  R :A,]B,R VdR fEdcd - [BCEcp;' ] p  f R  y VdR fE&d 

so that the compactness of Dz,ol follows from that of 

the second resolvent equation 

and it suffices to prove the 
existence of the boundary values Of B,R:VdRfEdCd and pfR;vdRrfEdcd. NOW by 

B,R 'I VdR f EdCd = B,R - B,R 

= [B,R : ' p i ] p  d2Edcd - [B,EdC; ' ]CdR fEdCd. (A 17) 

pd2Ed and BcEdCdl are bounded operators by virtue of (S3) and lemma 2 respectively. 
While the norm boundary value for B,Rypfi exists as z + A  + i O  for all A by remark 
6, that of CdRrfEdCd exists only for A E R \ O ~  (lemma 6). Since ~ ( x ) ~ E  
L'" (R') n L'-'(w~), the same considerations apply to the term p f ~ l  VdRtEdCd. Com- 
bining these observations with (A17), we conclude that Dz,ol has norm boundary 
value as z + A  +io, for ail A E R\O, and the convergence is uniform on each compact 
subset of R\O. 

lemma 2, the first two factors are bounded, the compactness and existence of boundary 
values of Dz,ll follow from lemma 6 (ii). 

Finally, D:p11 = C;'E,VdEdR;Cd ={C;'E,AdC,'}{BdEd}{CdRrfEdCd}. Since by 
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s (27r2)-'p,k,J d3x. d3xb le, (X , )12P(Xa) -2mlr l , (Xh)12 

where J is the Jacobian of transformation from (x,, y,) to (x,, x b ) .  Since rl, E L2(R3) 
and since p(x,)-"e,(x,)  E L2(R3) by (S3), we have that llM"(cp,,,, A 1 1 1 ~ ~  s 
constant k~/211rl,l12.11p(x)-meul12. The continuity of M"(cpm, A )  in B2 norm follows from 
the above estimate and an application of the Lebesgue dominated convergence 
theorem. 

(ii) Since M"(Ab, A )  = M " ( C t ,  A)Ci2E,Ab and C,2E,Ab E a(%') by lemma 2 (ii), 
it suffices to prove the stated results for M"(C:, A ) .  Since C, is multiplication by a 
function of y, only, we see from (A18) that M"(C:, A )  has the form 

(A191 

where M , ( p ) :  9, -Lf,(R3)+L2(S2) is the two-body operator as defined in (10.5) and 
(10.6) of AJS. Now p 2 ( * ) ~ L 3 ( R 3 ) ,  and it is shown in lemma 5 of Kat0 (1971) that 
M e ( @ )  E B4(L2(R3), L 2 ( S 2 ) ) ,  depends on p continuously in B4 norm if q( a )  E L3(R3),  
and llM,(p )I\ s llM,b)114 s constanth~ll3. 

IlMIl ($,, A MI2 = J 

M"(C:, A )  = M " ( C t ,  A ) € ,  = ~ M p 2 ( k ~ ) E ,  

(iii) By definitions (221425)  we find for f~ sP(R6) that 

d3q dw I(UIlIL4f)A (o ,q)12  
Iq/<1 

= 

= J d3q [ 2 ~ 2 / ~ h , ( A ,  q)2A-'/2(1 -q 1 3 

xllM4(yi 'A(1 -q2))f(*,  (A/t70)"2q)I12 

d'q dw h,(A, q)2/ (a ) (y , ' /2A1 '2(1  -q2)"20, ( A / t 7 , ) " 2 q ) / 2  
Iq ls l  

2 - 1 / 2  

Ids 1 

where M + ( p )  is the two-body operator mentioned above which acts in the first variable 
of defined as the Fourier transform of f with respect to its second variable. Since 
IIM4(p)II s ~onstant(l$l(~, we conclude that 

3/2 2 llM: (&, A ) f l l z  s constantll$\l: 1 d3q A 

s constantllrl,((: d3k [If( a ,  k)(I2 

= constantII~IIWI12 

q I I f C  - ,  (A/t7a) ' /2S)I12 
lqls 1 

which shows that llM: (rl,,, A)ll s constantllrl,l13. The strong continuity of M :  (rl,,, A )  
follows from the above expressions, an application of the Lebesgue dominated conver- 
gence theorem and the fact that, if L,,f+ Lf for all f in  a dense set and if lIL,II s K for 
all n,  then L,  + L strongly. 
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Property (iv) of M u  and M" follows exactly as in the two-body case (see e.g. lemma 
10.3 of AJS and Kat0 (1971)). 

Remark 7. Let Icpm(r,, &)I CP( . r , ) - "p (&)  with m = 0 ,  1, 2 or 3 and a + a  # b. In such 
a case, M"(cp,, A )  is in %m(L2(R6), L2(S '2 ' ) )  for A E ( A u ,  00) and depends on A con- 
tinuously in operator norm. To see this we note that, as in (A19), 

M m ( q m ,  A 1 = M"(c,, A )C,'E,(P, = JZM,,(~%)IE,C;'~,,I. 
We have E,C;'q, E a(%') by (A10) and ( S 3 ) ,  whereas the two-body operator M p ( p )  
is in %,(L2(iW3), L 2 ( S 2 ) )  for p E (0 ,  CO) and is norm continuous in p by lemma 10.21 
Of AJS. 
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